Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
2692 measured reflections
2528 independent reflections
1943 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\text {max }}=26.3^{\circ}$
$h=-11 \rightarrow 0$
$k=0 \rightarrow 9$
$l=-22 \rightarrow 22$
3 standard reflections frequency: 120 min intensity decay: 0.7%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.157$
$S=1.097$
2527 reflections
156 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0763 P)^{2}\right.$ $+0.3950 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=-0.004$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.23 \mathrm{e}^{-3}$
Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.032 (4)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{N} 1-\mathrm{C} 7$	$1.372(2)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.289(2)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.379(2)$	$\mathrm{C} 7-\mathrm{Cl2}$	$1.376(3)$
$\mathrm{N} 1-\mathrm{Cl}$	$1.419(2)$	$\mathrm{C} 11-\mathrm{Cl} 2$	$1.399(3)$
$\mathrm{N} 2-\mathrm{C} 11$	$1.323(2)$		
$\mathrm{C} 7-\mathrm{Cl} 2-\mathrm{Cl1}$	$106.2(2)$		
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 7-\mathrm{Cl} 2$	$-36.4(3)$	$\mathrm{C} 9-\mathrm{N} 4-\mathrm{C} 8-\mathrm{N} 3$	$1.1(3)$

The pyrazole ring and methyl H atoms were added at calculated positions. The remaining H atoms were treated with a riding model with SHELXL93 (Sheldrick, 1993) defaults (C-H 0.93-0.96 \AA) and were not refined; $U_{\mathrm{i}, \mathrm{o}}=0.076 \AA^{2}$ was assigned to all H atoms.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CAD-4 SDP (Frenz, 1978). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93. Molecular graphics: ZORTEP (Zsolnai, 1995). Software used to prepare material for publication: SHELXL93.

The authors wish to acknowledge Universidad del Valle and COLCIENCIAS (Colombia) and the Brazilian agencies FAPESP, FINEP and IQSC of Universidade de São Paulo for partial financial support. We also thank Dr Rodrigo Paredes for fruitful discussions and suggestions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1200). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. \& Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187-204.
Bechtel, F., Gaultier, J. \& Hauw, C. (1973). Cryst. Struct. Commun. 2, 473-476.

Enraf-Nonius (1989). CAD-4 Sofiware. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - a Real-Time System for Concurrent X-ray Data Collection and Cnystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64 71. Delft University Press.

Lamartina, L. \& Migliara, O. (1990). Boll. Chim. Farm. 129, 314-316.
Larsen. F. K., Lehmann, M. S., Sotofte, I. \& Rasmussen, S. E. (1970). Acta Chem. Scand. 24, 3248-3256.
Llamas-Saiz, A. L., Foces-Foces. C. \& Elguero. J. (1994). J. Mol. Struct. 319, 231-260.
Molina, P., Arques, A., Alias, A., Foces-Foces, M. C. \& Llamas-Saiz, A. L. (1992). J. Chem. Soc. Chem. Commun. pp. 424-426.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen. Germany.
Zsolnai, L. (1995). ZORTEP. Interactive Graphics Program. University of Heidelberg. Germany.

Acta Cryst. (1999). C55, 2098-2100

4-(4-Methylphenyl)-3-(4-pyridyl)-1H-1,2,4-triazole-5(4H)-thione

Lakshmanan Govindasamy, ${ }^{a}$ Devadasan Velmurugan, ${ }^{a}$ Annamalai Senthilvelan ${ }^{b}$ and Il-Hawn Suh ${ }^{c}$
${ }^{a}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{b}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and 'Department of Physics, Chungnam National University; Toejon 305-764, Korea. E-mail: crystal@giasmd01.vsnl.net.in
(Received 12 April 1999; accepted 26 July 1999)

Abstract

The title compound, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~S}$, crystallizes with two independent molecules which differ slightly in conformation. The methyl-substituted phenyl ring is inclined at angles of $67(1)$ and $76(1)^{\circ}$ with respect to the 1,2,4-triazole moiety in molecules 1 and 2, respectively. The dihedral angles between the substituted pyridyl and phenyl rings are $73(1)$ and $71(1)^{\circ}$, respectively, in the two molecules. The two molecules are linked by N $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

1,2,4-Triazole derivatives have antibacterial (Jantová et al., 1998), antimicrobial, antiviral, antifungal (Holla et al., 1996), antioxidant and antiradical activities (Dunaev et al., 1996). These derivatives are also used as adenosine deaminase (Volpini et al., 1997) and aromatase inhibitors (Okada et al., 1997). Condensed [1,2,4]-triazoles are biologically interesting products (Kottke et al., 1983;

Francis et al., 1988). Triazoles also have the ability to form a bridge between metal ions in the synthesis of complexes. These complexes are particularly important for magnetochemistry applications (Groeneveld et al., 1982). The structural study of triazole compounds is important for understanding their reactivity under condensation reaction conditions and here we present the crystal structure of the title triazole, (I).

The molecular structure of (I) (Fig. 1) consists of one pyridyl ring and one methylphenyl ring, substituted at C2 and N1, respectively, of a 1,2,4-triazole-5-thione system. The average $\mathrm{C}=\mathrm{S}$ distance $[1.662(3) \AA$ is comparable with literature values (Sen et al., 1996). The triazole ring is planar. Selected molecular dimensions are given in Table 1.
The sums of the angles at N 1 and $\mathrm{N1}^{\prime}$ are 359.2 (2) and $359.5(2)^{\circ}$, respectively, indicating that there is no pyramidal distortion. The dihedral angles between the 1,2,4-triazole and the substituent methylphenyl and pyridyl rings are 67 (1) and $37(1)^{\circ}$, respectively, in molecule 1 and 76 (1) and $37(1)^{\circ}$, respectively, in molecule 2. The two substituent rings are twisted with respect to each other by dihedral angles of $73(1)$ and $71(1)^{\circ}$ in molecules 1 and 2 , respectively. The orientation of substituents with respect to the triazole rings can be described by the torsion angles (Table 1).
The molecules pack along the b axis perpendicular to \mathbf{c}. The structure of (I) is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$
intermolecular hydrogen bonds which generate chains of molecules.

Experimental

A mixture of p-tolyl isothiocyanate $(1.13 \mathrm{~g}, 0.0075 \mathrm{~mol})$ and isonicotinic acid hydrazide $(0.86 \mathrm{~g}, 0.0063 \mathrm{~mol})$ was refluxed in $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ solution (50 ml) for 8 h , cooled and filtered and the filtrate washed with ethyl acetate. The aqueous layer was neutralized ($\mathrm{pH}=7$) with cold dilute HCl . The separated solid was filtered and washed with water to afford the title compound (yield 40%; m.p. 511-513 K). Single crystals were obtained by slow evaporation of a solution of (I) in an ethyl acetate-methanol mixture (50:50).

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~S}$
$M_{r}=268.34$
Monoclinic
$P 2_{1} / c$
$a=7.7234$ (9) \AA
$b=21.356$ (3) \AA
$c=16.252(5) \AA$
$\beta=92.882(15)^{\circ}$
$V=2677.3(9) \AA^{3}$
$Z=8$
$D_{x}=1.331 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical via ψ scan
(North et al., 1968)
$T_{\text {min }}=0.887, T_{\text {max }}=0.934$
5150 measured reflections
4968 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=5-20^{\circ}$
$\mu=0.233 \mathrm{~mm}^{-1}$
$T=289$ (2) K
Block
$0.53 \times 0.40 \times 0.30 \mathrm{~mm}$
Colourless

3477 reflections with

$$
I>2 \sigma(I)
$$

$R_{\text {int }}=0.023$
$\theta_{\text {max }}=25.46^{\circ}$
$h=-9 \rightarrow 9$
$k=0 \rightarrow 25$
$l=0 \rightarrow 19$
3 standard reflections every 200 reflections intensity decay: $<2 \%$

Fig. I. The two independent molecules of (I) with 50% probability displacement ellipsoids and showing the atom-numbering scheme. H atoms have been omitted for clarity.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.118$
$S=1.018$
4968 reflections
345 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.052 P)^{2}\right.$
$+0.6603 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$

$\mathrm{Sl}-\mathrm{Cl}$	1.663 (2)	$\mathrm{S} 1^{\prime}-\mathrm{Cl}{ }^{\prime}$	1.660 (3)
$\mathrm{N} 1-\mathrm{C} 2$	1.376 (3)	$\mathrm{Nl}^{\prime}-\mathrm{C}^{\prime}$	1.378 (3)
$\mathrm{Nl}-\mathrm{Cl}$	1.389 (3)	$\mathrm{N1}^{\prime}-\mathrm{Cl}^{\prime}$	1.382 (3)
$\mathrm{N} 1-\mathrm{C} 3$	1.441 (3)	$\mathrm{N1}^{\prime}-\mathrm{Cl}^{\prime}$	1.437 (3)
$\mathrm{N} 2-\mathrm{C} 2$	1.295 (3)	$\mathrm{N} 2^{\prime}-\mathrm{C} 2^{\prime}$	1.300 (3)
N2-N3	1.367 (3)	$\mathrm{N} 2^{\prime}$ - $\mathrm{N} 3^{\prime}$	1.377 (3)
N3-C1	1.333 (3)	$\mathrm{N} 3^{\prime}-\mathrm{Cl}{ }^{\prime}$	1.339 (3)
C2-C9	1.474 (3)	$\mathrm{C} 2^{\prime}-\mathrm{C} 9^{\prime}$	1.480 (3)
$\mathrm{C} 2-\mathrm{Nl}-\mathrm{Cl}$	107.00 (18)	$\mathrm{C} 2{ }^{\prime}-\mathrm{Nl}^{\prime}-\mathrm{Cl}^{\prime}$	107.43 (19)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	128.52 (18)	$\mathrm{C} 2^{\prime}-\mathrm{N1}^{\prime}-\mathrm{C} 3^{\prime}$	128.79 (19)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	123.69 (19)	$\mathrm{Cl}^{\prime}-\mathrm{Nl}^{\prime}-\mathrm{Cl}^{\prime}$	123.3 (2)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 3$	103.78 (19)	$\mathrm{C} 2^{\prime}-\mathrm{N} 2^{\prime}-\mathrm{N} 3^{\prime}$	103.5 (2)
$\mathrm{Cl}-\mathrm{N} 3-\mathrm{N} 2$	114.20 (18)	$\mathrm{C} 1^{\prime}-\mathrm{N} 3^{\prime}-\mathrm{N} 2^{\prime}$	113.97 (19)
$\mathrm{Cl} 1-\mathrm{N} 4-\mathrm{Cl2}$	116.5 (2)	$\mathrm{Cl1}^{\prime}-\mathrm{N}^{\prime}-\mathrm{Cl}^{\prime}{ }^{\prime}$	116.9 (2)
$\mathrm{N} 3-\mathrm{C} 1-\mathrm{N} 1$	103.19 (19)	$\mathrm{N} 3^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{N} 1^{\prime}$	103.3 (2)
N3-Cl-S1	127.46 (17)	$\mathrm{N} 3^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{S} 1^{\prime}$	129.05 (18)
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{Sl}$	129.33 (18)	$\mathrm{Nl}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{Sl}^{\prime}$	127.7 (2)
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1$	111.83 (19)	$\mathrm{N} 2^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}-\mathrm{N} 1^{\prime}$	111.8 (2)
N2-C2-C9	121.2 (2)	$\mathrm{N} 2^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 9^{\prime}$	124.2 (2)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 9$	126.9 (2)	$\mathrm{Nl}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}$	123.9 (2)
$\mathrm{Cl}-\mathrm{Nl}-\mathrm{C} 3-\mathrm{C} 4$	-106.7 (3)	$\mathrm{Cl}^{\prime}-\mathrm{N1}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}$	-98.8 (3)
N1-C2-C9-C10	-147.0 (2)	$\mathrm{N1}{ }^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\mathrm{Cl}^{\prime}{ }^{\prime}$	- 144.3 (3)

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{~N} 4^{\prime \mathrm{i}}$	0.86	1.96	$2.803(3)$	166
$\mathrm{~N} 3^{\prime}-\mathrm{H} 3^{\prime} \cdots \mathrm{N} 4^{\mathrm{ii}}$	0.86	2.02	$2.852(3)$	164

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $-1-x, y-\frac{1}{2}, \frac{1}{2}-z$.
Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CAD-4 Software. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b). Molecular graphics: ZORTEP (Zsolnai, 1997). Software used to prepare material for publication: PARST (Nardelli, 1995).

LG thanks the CSIR, India, for providing financial support in the form of a Senior Research Fellowship. The authors thank Professor V. T. Ramakrishnan for providing the compound.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1553). Services for accessing these data are described at the back of the journal.

References

Dunaev, V. V., Belenichev, I. F., Kovalenko, S. I., Vashkin, I. N., Avramenko, N. A., Mazur, I. A., Knysh, E. G. \& Tishkin, V. S. (1996). Ukr. Biokhim. Zh. 68, 100-104.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Francis, J. E., Cash, W. D., Psychoyos, S., Ghai, G., Wenk, P., Friendmann, R. C., Atkins, C.. Warren, V., Furness, P., Hyun, J. L., Stone, G. A., Desai, M. \& Williams, M. (1988). J. Med. Chem. 31, 1014-1020.
Groeneveld, L. R., Vos, G., Gorter, S. \& Haasnoot, J. G. (1982). Acta Cryst. B38, 2248-2250.
Holla, B. S., Poojary, K. N., Kalluraya, B. \& Gowda, P. V. (1996). Farmaco, 51, 793-799.
Jantová, S., Greif, G., Pavloviciová, R. \& Cipák, L. (1998). Folia Microbiol. (Prague), 43, 75-78.
Kottke, K., Kuesmstedt, H., Hagen. V.. Renner, H. \& Schnitzler, S. (1983). Chem. Abstr. 99, 70757v.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Okada, M., Yoden, T., Kawaminami, E., Shimada. Y.. Kudoh, M. \& Isomura, Y. (1997). Chem. Pharm. Bull. 45, 333-337.
Sen, A. K., Dubey, S. N. \& Squattrito, P. J. (1996). Acta Cryst. C52. 865-868.
Sheldrick. G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick. G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Volpini, R., Camaioni, E., Lupidi, G., Vittori, S. \& Cristalli, G. (1997). Farmaco, 52, 429-433.
Zsolnai, L. (1997). ZORTEP. Molecular Graphics Program. University of Heidelberg, Germany.

Acta Cryst. (1999). C55, 2100-2102

2-Methyltelluro- N-phenylbenzamide

Robert W. Gable, Melissa J. Laws and Carl H. Schiesser

School of Chemistry, The University of Melbourne, Parkville, Victoria 3052, Australia. E-mail: gable@chemistr:.unimelb. edu.au
(Received 19 March 1999; accepted 27 August 1999)

Abstract

The title tellurium compound, $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NOTe}$, is isostructural with the selenium analogue, 2-methylseleno- N phenylbenzamide [Fong, Gable \& Schiesser (1996). Acta Cryst. C52, 1886-1889], having a Te \cdot O separation of 2.835 (2) A. Steric repulsions between the ortho- H atom on the N -phenyl ring and the amide- O atom result in asymmetry in the bond angles around the junction C atom of the N-phenyl ring, while the angles around the N and amide C are influenced by the $\mathrm{Te} \cdots \mathrm{O}$ interaction. The amide- N atom is involved in hydrogen bonding with the O atom of an adjacent molecule, forming zigzag chains that lie along the a axis.

